PV System Values: Solar Energy Needs Electrical Storage Now

By Joseph McCabe, PE   August 31, 2012
 
Dramatic cost reduction in photovoltaics (PV), combined with lower electrical storage costs from batteries for the automotive industry, are creating new business opportunities for grid-tied PV systems that include energy storage. This article addresses the technical and economical justification for electrical storage with PV and what it means for the PV industry.

Solar Power Day and Night: New Storage Systems Control Fluctuation of Renewable Energies

lithium-ion-battery-storage-unitsScienceDaily (Aug. 9, 2012) — Energy storage systems are one of the key technologies for the energy turnaround. With their help, the fluctuating supply of electricity based on photovoltaics and wind power can be stored until the time of consumption. At Karlsruhe Institute of Technology (KIT), several pilot plants of solar cells, small wind power plants, lithium-ion batteries, and power electronics are under construction to demonstrate how load peaks in the grid can be balanced and what regenerative power supply by an isolated network may look like in the future.

"High-performance batteries on the basis of lithium ions can already be applied reasonably in the grid today," says Dr. Andreas Gutsch, coordinator of the Competence E project. As stationary storage systems, they can store solar or wind power until it is retrieved by the grid. "When applied correctly, batteries can also balance higher load and production peaks and, hence, make sense from an economic point of view."

The Competence E project is presently developing several pilot systems consisting of photovoltaics and wind power plants coupled to a lithium-ion battery. Over a development phase of two years, a worldwide battery screening was made. "Now, we know which lithium-ion cells are suited best for stationary storage systems," says Gutsch. The first stage of the modular systems will be constructed on KIT Campus North by the end of 2012. It will have a capacity of 50 kW.

A newly developed, gear-free wind generator that is particularly suited for weak wind regions will complement electricity production by the photovoltaics system in the winter months in particular. The first stage will be able to cover electricity consumption of a medium-sized company throughout the year. In the long term, the know-how obtained will be used to develop smaller storage systems for private households as well as larger systems for industry.

Apart from the battery, the key component of the stationary energy storage system is an adapted power electronics unit for charging and discharging the battery within two hours only. Hence, the stationary storage system can be applied as an interim storage system for peak load balancing. During times of weak loads, solar energy and wind electricity are fed into the battery. At times of peak load, the energy from the photovoltaics system, wind generator, and battery is fed into the grid. Apart from load management, night discharge is of significant economic importance, because consumption of photovoltaics energy by other electric devices of the user can be increased considerably. The battery is charged in the afternoon and discharged during darkness until the next morning.

"Controlling the interaction of solar cells, wind generator, storage systems, and the grid is the central challenge," Gutsch explains. System control always has to reliably and precisely interfere with the multitude of operation states. Only this will ensure a good service life and performance of the lithium-ion batteries in the long term and, hence, economic efficiency of the complete system. "Such a system can be controlled 24 h a day and 365 days a year with detailed battery know-how. Only then will economically efficient and safe operation be guaranteed for decades," emphasizes Gutsch. After first functional tests, concrete application systems of variable power will be produced in cooperation with industry.

In spite of the high costs of lithium-ion batteries, this technology may be worthwhile today already, in particular in regions that do not have any stable grids. Smaller and larger islands, for example, are often supplied with electricity by diesel generators. In Africa and India, large areas are not supplied with electricity at all. A photovoltaics system with a coupled lithium-ion battery can be applied profitably, if appropriate system design and load profile are chosen. With decreasing costs of system components, we will achieve "battery parity" in Germany, in analogy to the "grid parity" already reached for photovoltaics-based electricity consumption by the private customer.

Click here for Full Article...

 

ARPA-E Announces $43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies

August 2, 2012 - 10:34am
WASHINGTON – The Department of Energy today announced that 19 transformative new projects will receive a total of $43 million in funding from the Department’s Advanced Research Projects Agency-Energy (ARPA-E) to leverage the nation’s brightest scientists, engineers and entrepreneurs to develop breakthrough energy storage technologies and support promising small businesses. These projects are supported through two new ARPA-E programs -- Advanced Management and Protection of Energy Storage Devices (AMPED) and Small Business Innovation Research (SBIR) – and will focus on innovations in battery management and storage to advance electric vehicle technologies, help improve the efficiency and reliability of the electrical grid and provide important energy security benefits to America’s armed forces.

“This latest round of ARPA-E projects seek to address the remaining challenges in energy storage technologies, which could revolutionize the way Americans store and use energy in electric vehicles, the grid and beyond, while also potentially improving the access to energy for the U.S. military at forward operating bases in remote areas,” said Secretary of Energy Steven Chu. “These cutting-edge projects could transform our energy infrastructure, dramatically reduce our reliance on imported oil and increase American energy security.”

Twelve research projects are receiving $30 million in funding under the AMPED program, which aims to develop advanced sensing and control technologies that could dramatically improve and provide new innovations in safety, performance, and lifetime for grid-scale and vehicle batteries. Unlike other Department of Energy efforts to push the frontiers of battery chemistry, AMPED is focused on maximizing the potential of existing battery chemistries. These innovations will help reduce costs and improve the performance of next generation storage technologies, which could be applied in both plug-in electric and hybrid-electric vehicles. For example, Battelle Memorial Institute in Columbus, Ohio, will develop an optical sensor to monitor the internal environment of a lithium-ion battery in real-time.

ARPA-E is also announcing a total of $13 million for seven projects to enterprising small businesses to pursue cutting-edge energy storage developments for stationary power and electric vehicles.  These projects will develop new innovative battery chemistries and battery designs, continuing ARPA-E’s funding for storage technologies.  These awards are part of the larger Department-wide Small Business Innovative Research (SBIR)/Small Business Technology Transfer (STTR) program. For example, Energy Storage Systems, Inc., in Portland, Oregon, will construct a flow battery for grid scale storage using an advanced cell design and electrolyte materials composed of low cost iron.  The flow battery will have a target storage cost of less than $100/kWh, which could enable deployment of renewable energy technologies throughout the grid.

Information on all of the new AMPED and SBIR projects announced today is available HERE.

ARPA-E’s Principal Deputy Director Eric Toone announced the selected projects at the Information Technology and Innovation Foundation’s event, the “New Age of Discovery: Government’s Role in Transformative Innovation,” in Washington, DC, where he spoke alongside former ARPA-E Director Arun Majumdar. 

ARPA-E was launched in 2009 to seek out transformational, breakthrough technologies that are too risky for private-sector investment but have the potential to translate science into quantum leaps in energy technology, form the foundation for entirely new industries, and have large commercial impacts. Prior to today’s announcement, ARPA-E has attracted over 5,000 applications from research teams, which have resulted in approximately 180 groundbreaking projects worth nearly $500 million.  More information on the program is available at www.arpa-e.energy.gov.